Modular spaces and K-widths

A. G. Aksoy and G. Lewicki

Abstract. In this paper, we show that the ball measure of noncompactness of a modular space X_{ρ} is equal to the limit of its K-widths when ρ is a left continuous, s-convex modular function, without any Δ_2 -condition. We also obtain a similar result for SF-spaces, when the SF-norm \mathcal{N} is uniformly continuous.

1991 Mathematics Subject Classification: 46E30, 46A50, 46B99

1. Notation and definitions

Throughout the following X is a linear space over a field K ($K = \mathbb{R}$ or $K = \mathbb{C}$).

I. A function $\rho: X \to [0, \infty]$ is called *modular* if the following hold for arbitrary $x, y \in X$:

- 1. $\rho(x) = 0$ iff x = 0.
- 2. $\rho(\alpha x) = \rho(x)$ if $\alpha \in K$, $|\alpha| = 1$.
- 3. $\rho(\alpha x + \beta y) \le \rho(x) + \rho(y)$ for $\alpha, \beta \ge 0, \alpha + \beta = 1$.

If in place of 3) we have

$$\rho(\alpha x + \beta y) \le \alpha^s \rho(x) + \beta^s \rho(y)$$
 for $\alpha, \beta \ge 0, \alpha^s + \beta^s = 1$

for an $s \in (0, 1]$, then ρ is called s-convex modular (convex if s = 1).

The set

$$X_{\rho} = \{x \in X : \lim_{\alpha \to 0} \rho(\alpha x) = 0\}$$

is called a modular space.

Each modular space X_{ρ} may be equipped with an F-norm given by the formula

$$|x|_{\rho} = \inf\{u > 0 : \rho(x/u) \le u\} \quad \text{for } x \in X_{\rho}.$$

A modular ρ in X is called left continuous if $\lim_{\lambda \to 1^-} \rho(\lambda x) = \rho(x)$ for all $x \in X_{\rho}$.

Offprint from: Functional Analysis, Eds.: Dierolf/Dineen/Domański © Walter de Gruyter & Co., Berlin New York

It is known (see [8]) that, if ρ is left continuous, s-convex modular in X, then the inequalities $|x|_{\rho}^{s} \leq 1$ and $\rho(x) \leq 1$ are equivalent for every $x \in X_{\rho}$. Here by $|x|_{\rho}^{s}$ we mean

$$|x|_{\rho}^{s} = \inf\{u > 0 : \rho(\frac{x}{u^{1/s}}) \le 1\}.$$

A particular class of modular spaces are Orlicz-Musielak spaces. To define these spaces, let (E, Σ, μ) be a measure space and let $f: E \times \mathbb{R}_+ \to \mathbb{R}_+$ satisfy the following conditions.

- 1. $f(t, \cdot): \mathbb{R}_+ \to \mathbb{R}_+$ is a nondecreasing, continuous function such that f(t, 0) = 0 and f(t, u) > 0 for u > 0.
- 2. $f(\cdot, u): E \to \mathbb{R}_+$ is a Σ -measurable function for all u > 0.
- 3. $\int_A f(t, u) d\mu(t) < \infty$ for every u > 0 and $A \in \Sigma$, $\mu(A) < \infty$.

Suppose that X is the space of all real (or complex) valued Σ -measurable functions defined on E. For $x \in X$, set

$$\rho_f(x) = \int_E f(t, |x(t)|) d\mu(t).$$

From the above 1) and 2), it is clear that ρ_f is modular. The modular space X_ρ is called Orlicz-Musielak space (and Orlicz space, if the function f is independent of the variable t).

We say the function f satisfies a Δ_2 -condition if

$$f(t, 2u) \leq K f(t, u) + h(t)$$

for all $u \ge 0$, $t \in E$ where $h \in L^1(E, \mu)$, $h \ge 0$ and K is a positive constant independent of the variables t, u.

For further theory of modular spaces we refer to [8].

II. Assume a function $\mathcal{N}: X \to \mathbb{R}_+$ satisfies the following conditions.

- 1. $\mathcal{N}(x) = 0$ iff x = 0.
- 2. $a_n \to a$ and $\mathcal{N}(x_n x) \to 0$ then $\mathcal{N}(a_n x_n ax) \to 0$ for all sequences $\{a_n\} \subset K$ and $\{x_n\} \subset X$.
- 3. If $\mathcal{N}(x_n x) \to 0$ and $\mathcal{N}(y_n y) \to 0$ then $\mathcal{N}(x_n + y_n x y) \to 0$ for all sequences $\{x_n\}, \{y_n\} \subset X$.
- 4. $\mathcal{N}(ax) = \mathcal{N}(x)$ for every $x \in X$ and $a \in K$, |a| = 1;
- 5. $\mathcal{N}(x_n x) \to 0$ then $\mathcal{N}(x_n) \to \mathcal{N}(x)$ for every $\{x_n\} \subset X$.
- 6. The space X is complete with respect to the topology induced by the family $C = \{B(x; r) : x \in X, r > 0\}$ where

$$B(x;r) = \{ y \in X : \mathcal{N}(x-y) < r \}.$$

The pair (X, \mathcal{N}) is said to be an SF-space and the function \mathcal{N} will be called an SF-norm.

Note that each F-space (in particular each Banach space) is an SF-space. If f satisfies a Δ_2 -condition, then each Orlicz-Musielak space (X_{ρ_f}, ρ_f) is an SF-space. However, there exist SF-spaces which are neither F-spaces nor modular spaces as can be seen by the following

Example ([7]). Assume $f: \mathbb{R}_+ \to \mathbb{R}_+$ satisfies the following conditions:

- 1. f is continuous and f(t) = 0 iff t = 0.
- 2. There exists d > 0 such that $f_{|_{[0,d]}}$ is strictly increasing.
- 3. There exists $d_1 > 0$ and M > 1 such that

$$f(t+s) \le M(f(t)+f(s))$$
 for $s, t \in [0, d_1]$.

4. There exists $\lim_{t\to\infty} f(t) \in (0, \infty)$.

Let (E, Σ, μ) be a measure space, $\mu(E) < \infty$ and let $M(E) = \{x : E \to R, x \text{ is } \Sigma\text{-measurable }\}$. For $x \in M(E)$ define $\mathcal{N}(x) = \int_E f(|x(t)|) \, d\mu(t)$. By Fatou's lemma, the Riesz and the Lebesgue theorems, one can show that the pair $(M(E), \mathcal{N})$ is an SF-space. It is clear that for nonmonotonic f the function \mathcal{N} is not modular, and if we additionally assume

$$\lim_{t\to+\infty}f(t)<\frac{1}{2}\sup\{f(t):\,t\in\mathbb{R}_+\}$$

then the pair $(M(E), \mathcal{N})$ can not be an F-space.

The SF-norm $\mathcal N$ is called nondecreasing iff for any $t_1, t_2 \in \mathbb R$, $|t_1| \le |t_2|$ implies $\mathcal N(t_1x) \le \mathcal N(t_2x)$ and given D in an SF-space $(X, \mathcal N)$, we say D is bounded iff $\lambda_n \to 0$, $x_n \in D$ implies $\mathcal N(\lambda_n x_n) \to 0$. Analogously $D \subset X_\rho$ is ρ -bounded iff $a_n \to 0$, $x_n \in D$ implies $\rho(a_n x_n) \to 0$. The SF-norm $\mathcal N$ is called uniformly continuous if for every $\varepsilon > 0$, there is a $\delta > 0$ such that

if
$$N(f-g) < \delta$$
 then $|N(f) - N(g)| < \varepsilon$.

Note that in the definition of the SF-space, ${\cal N}$ is only a continuous function.

Proposition 1. Let (X, \mathcal{N}) be an SF-space with \mathcal{N} being uniformly continuous. Then for every $\varepsilon > 0$ there is V, an open neighbourhood of 0, such that

$$B^{\mathcal{N}}(0,r) + V \subset B^{\mathcal{N}}(0,r+\varepsilon)$$
 (*)

where $B^{\mathcal{N}}(x,r) = \{y \in X : \mathcal{N}(x-y) \le r\}.$

The proof is straightforward.

III. Let (X, \mathcal{N}) be an SF-space. For $V \subset X$, $V \setminus \{0\} \neq \emptyset$ put

$$R_{\mathcal{N}}(V) = \inf \{ \sup \{ \mathcal{N}(tv) : t \in \mathbb{R}_+ \} : v \in V \setminus \{0\} \}.$$

This number which may be equal to $+\infty$, is called the radius of the set V ([7]). As shown in the following example, it may also occur that $R_N(V) = 0$.

Example. Let X be the space of all complex sequences equipped with an SF-norm $\mathcal N$ defined by

$$\mathcal{N}(x) = \sum_{i=1}^{\infty} \left(\frac{1}{2}\right)^i \frac{|x_i|}{1+|x_i|} \quad \text{for } x \in X.$$

Let for $n \in N$, $V_n = \{x \in X : x_j = 0 \text{ for } j > n\}$. Then clearly $R_N(V_n) = 2^{-n}$ and consequently $R_N(X) = 0$.

In [7] it is shown that if X_{ρ} is a modular space with ρ s-convex modular, then $R_{\rho}(X_{\rho}) = +\infty$.

K-widths are extensively studied in the context of approximation theory [10]. Our aim in this paper is to connect K-widths with measures of noncompactness. Such connections are not only useful in fixed point theory (see [3], [11]) but also in the study of the radius of the essential spectrum (see [6], [9]). Measures of noncompactness for Orlicz spaces are studied in [1], [2] and [4]. In [5] one can find fixed point theorems for Orlicz modular spaces.

2. K-widths in SF-spaces

Let (X, \mathcal{N}) be an SF-space, D be bounded set in X. Then the ball measure of non-compactness of D, $\alpha(D)$, is

$$\alpha(D) = \inf\{r > 0 : D \subset \bigcup_{k=1}^n B^{\mathcal{N}}(x_k, r)\}$$

and K-th width of D, $d^k(D)$, is defined as

$$d^k(D) = \inf\{r > 0: D \subset B^{\mathcal{N}}(0,r) + A_k \operatorname{dim}(A_k) \le k\}.$$

Theorem 1. Let D be a bounded subset of an SF-space (X, N). Suppose that N is nondecreasing, $R_N(X) = \infty$ and for every r > 0, $\varepsilon > 0$ and E finite dimensional subspace of X, there is an open neighborhood V of 0 in E such that

$$B^{\mathcal{N}}(0,r) + V \subset B^{\mathcal{N}}(0,r+\varepsilon).$$
 (*)

Then $\alpha(D) = \lim_{k \to \infty} d^k(D)$.

Proof. Let D be a fixed bounded set in X. If there is r > 0 and $k \in N$ such that $D \subset \bigcup_{i=1}^k B^{\mathcal{N}}(x_i, r)$, then

$$D \subset B^{\mathcal{N}}(0,r) + \bigcup_{i=1}^{k} \{x_i\} \subset B^{\mathcal{N}}(0,r) + \operatorname{Span}(x_1, x_2, \dots, x_k).$$

Therefore, if $\alpha(D) < \infty$ then $d = \lim_k d^k(D)$ is finite and $d \le \alpha(D)$.

To obtain the other inequality, assume that $d < +\infty$, fix $k \in N$, $\varepsilon > 0$ and $A_k \subset X$ with dim $A_k = k$ such that

$$D \subset B^{\mathcal{N}}(0, d^k(D) + \varepsilon) + A_k$$
.

Let us define

$$D_1 = \{ g \in B^{\mathcal{N}}(0, d^k(D) + \varepsilon) : \text{ there is } h \in A_k, g + h \in D \}$$

$$D_2 = \{ h \in A_k : \text{ there is } g \in B^{\mathcal{N}}(0, d^k(D) + \varepsilon), g + h \in D \}.$$

Obviously $D \subset D_1 + D_2$. Now we claim that D_2 is a bounded set in (X, \mathcal{N}) . Assume on the contrary that there is $\{h_n\} \subset D_2$ and $\{\lambda_n\} \subset \mathbb{R}$, $\lambda_n \to 0$ such that $\mathcal{N}(\lambda_n h_n)$ does not tend to zero. Since $\dim(A_k) = k$, one has

$$\lambda_n h_n = \sum_{i=1}^k r_i^n y_i$$

where y_1, \ldots, y_k is a fixed basis of A_k . Consider the following cases.

Case 1: $\sup_{n\in\mathcal{N}}(\max_{1\leq i\leq k}|r_i^n|)<+\infty$. Then passing to a subsequence, if necessary, by the properties of \mathcal{N} (II.2 and 3) we may assume $\mathcal{N}(\lambda_n h_n-h)\to 0$ for some $h\in X, h\neq 0$.

On the other hand, by the definition of D_2 , for every $n \in N$ there is $g_n \in D_1$ with $f_n = g_n + h_n \in D$. Since $R_N(X) = +\infty$, there is a t > 0 such that $N(th) > d^k(D) + \varepsilon$. By the boundedness of D, $N(\lambda_n f_n) \to 0$. By II.1, II.2 and II.5 of the definition.

$$\mathcal{N}(t\lambda_n g_n) \to \mathcal{N}(th) > d^k(D) + \varepsilon.$$

But for $n \ge n_0$, $t\lambda_n < 1$. Since \mathcal{N} is nondecreasing

$$\mathcal{N}(t\lambda_n g_n) \leq \mathcal{N}(g_n) \leq d^k(D) + \varepsilon \quad \text{for } n \geq n_0,$$

a contradiction.

Case 2: there is $i_0 \in 1, ..., k$ with $\lim_{n \to \infty} \inf |r_{i_0}^n| = +\infty$. Passing to a subsequence, if necessary, we may assume that for each $i \in \{1, 2, ..., k\}$,

$$c_i = \lim_n \frac{r_i^n}{r_{i_0}^n}$$
 $(c_{i_0} = 1).$

By the Definition II.1, we have

$$\mathcal{N}\left[\left(\frac{\lambda_n}{r_{i_0}^n}\right)h_n-\sum_{i=1}^kc_iy_i\right]\to 0.$$

We can set $h = \sum_{i=1}^k c_i y_i$, since y_1, \ldots, y_k is a basis of A_k with $c_{i_0} = 1$, $h \neq 0$. Considering the subsequence $\lambda_n/r_{i_0}^n$ instead of λ_n and reasoning as in Case 1, we obtain a contradiction.

Therefore D_2 is a bounded set with respect to the topology defined by \mathcal{N} . Since each SF-space, as a complete, topological linear space with a countable basis of neighborhoods of 0 is metrizable, the SF-space (A_k, \mathcal{N}) is metrizable. But A_k is finite dimensional, the topology induced by \mathcal{N} in A_k is the same as any norm topology in A_k . Hence, D_2 is bounded in any norm in A_k . Consequently \bar{D}_2 (the closure of D_2 in A_k in any norm) is a compact set.

Now by the assumption (*), there is V an open neighborhood of 0 in A_k such that

$$B^{\mathcal{N}}(0, d^k(D) + \varepsilon) + V \subset B^{\mathcal{N}}(0, d^k(D) + 2\varepsilon).$$

Since \bar{D}_2 is a compact set $\bar{D}_2 \subset \bigcup_{i=1}^l x_i + V$. Note that

$$D \subset D_1 + D_2$$

$$\subset B^{\mathcal{N}}(0, d^k(D) + \varepsilon) + \bigcup_{i=1}^{l} \{x_i + V\}$$

$$\subset \bigcup_{i=1}^{l} \{x_i + B^{\mathcal{N}}(0, d^k(D) + 2\varepsilon)\}$$

$$= \bigcup_{i=1}^{l} B^{\mathcal{N}}(x_i, d^k(D) + 2\varepsilon).$$

Consequently, $\alpha(D) \leq d^k(D) + 2\varepsilon$ for every $\varepsilon > 0$ and $k \in N$, which yields

$$\alpha(D) \le d = \lim_k d^k(D).$$

Remark. Condition (*) in Theorem 1 is satisfied if \mathcal{N} is uniformly continuous, which covers the case of F-spaces. Moreover, if one assumes $\lim_{u\to\infty} f(t, u) = +\infty$ then the corresponding ρ_f F-norm $|\cdot|_{\rho}$ satisfies the assumptions in Theorem 1.

3. K-widths in modular spaces

Let X_{ρ} by a modular space and $D \subset X_{\rho}$ be a ρ -bounded set. Let B_{ρ} be the closed ρ -ball in X_{ρ} i.e., $B_{\rho} = \{x \in X_{\rho} : \rho(x) \leq 1\}$. K-width of D in X_{ρ} , $d_{\rho}^{k}(D)$, defined

as

$$d_{\rho}^{k}(D) = \inf\{\lambda > 0 : D \subset \lambda B_{\rho} + H : \dim H \le k\},\$$

and ρ -ball measure of noncompactness of D, $\alpha_{\rho}(D)$, defined as

$$\alpha_{\rho}(D) = \inf\{\lambda > 0: D \subset \bigcup_{i=1}^k \lambda(x_i + B_{\rho}): x_1, \ldots, x_k \in X_{\rho}\}.$$

Note that if ρ is a norm, then the notations d_{ρ}^{k} and α_{ρ} above coincide with the classical definitions of d^{k} and α .

The following are some basic properties of $\alpha_{\rho}(D)$.

Proposition 2. a) Montonicity: $D_1 \subset D_2$ implies $\alpha_{\rho}(D_1) \leq \alpha_{\rho}(D_2)$.

- b) Semi-additivity: $\alpha_{\rho}(D_1 \cup D_2) = \max{\{\alpha_{\rho}(D_1), \alpha_{\rho}(D_2)\}}$.
- c) Invariance under translation: $\alpha_{\rho}(D+x_0)=\alpha_{\rho}(D)$ for any $x_0\in X_{\rho}$.
- d) Algebraic semi-additivity: If ρ is convex, then $\alpha(D_1 + D_2) \leq \alpha(D_1) + \alpha_{\rho}(D_2)$.
- e) $\alpha_{\rho}(D) = \alpha_{\rho}(\overline{D})$ where the closureclosure is taken with respect to F-norm. Moreover if ρ is convex, then $\alpha(D) = \alpha(c_0(D))$ where $c_0(D)$ denotes the convex hull of D.
- f) If B_{ρ} is a $|\cdot|_{\rho}$ -bounded set, then $\alpha_{\rho}(D) = 0$ iff D is $|\cdot|_{\rho}$ -compact.

Proof. a) through e) follow from the definition. To prove f), set $B_{|\cdot|_{\rho}}(0,r) = \{x \in X_{\rho}: |x|_{\rho} \leq r\}$ and $\alpha_{|\cdot|_{\rho}}(D) = \inf\{r > 0: D \subset \bigcup_{i=1}^{k} [x_i + B_{|\cdot|_{\rho}}(0,r)]\}$, we claim that $\alpha_{\rho}(D) = 0$ implies $\alpha_{|\cdot|_{\rho}}(D) = 0$ and hence D is $|\cdot|_{\rho}$ -compact. Since B_{ρ} is bounded set, $\lambda_0 \cdot B_{\rho} \subset B_{\rho}(0,r)$ for some λ_0 . Then since $D \subset \bigcup_{i=1}^{k} \{x_i + \lambda_0 \cdot B_{\rho}\} \subset \bigcup_{i=1}^{k} \{x_i + B_{\rho}(C,r)\}$, we have the desired result. On the other hand, if D is $|\cdot|_{\rho}$ -compact set, then for every $\lambda > 0$, $D \subset \bigcup_{i=1}^{k} \{x_i + \lambda \cdot \operatorname{int}(B_{\rho})\}$. Hence, for every $x \in D$ contained in the open set $x_i + \lambda \cdot \operatorname{int}(B_{\rho})$ since λ was arbitrary $\alpha_{\rho}(D) = 0$.

Theorem 2. Suppose ρ is a modular and $R_{\rho}(X_{\rho}) = +\infty$. Suppose that the Luxemburg norm $|\cdot|_{\rho}$ satisfies the following conditions:

1. For every $\varepsilon > 0$, there is $\delta > 0$ with

$$B_{|\cdot|_{\rho}}(0,1+\delta) \subset (1+\varepsilon)\dot{B}_{|\cdot|_{\rho}}(0,1).$$

- 2. $|x_n| \to 0$ iff $\rho(x_n) \to 0$.
- 3. $\lim_{c\to 1} \rho(cx) = \rho(x)$ for $x \in X_{\rho}$.

Then $\lim_{k\to\infty} d_{\rho}^k(D) = \alpha(D)$.

Proof. As in the proof of Theorem 1, one can easily establish that $\lim_k d_0^k(D) \leq \alpha(D)$.

To prove the converse, consider $\varepsilon > 0$ and λ such that

$$\lim_{k} d_{\rho}^{k}(D) < \lambda < \lim_{k} d_{\rho}^{k}(D) + \varepsilon.$$

Define analogously as in Theorem 1,

$$D_1 = \{x \in B_{|\cdot|_{\rho}}(0, 1) : \text{ there is } h \in H_{k_0} \text{ with } \lambda x + h \in D\};$$

 $D_2 = \{h \in H_{k_0} : \text{ there is } x \in B_{\rho}, \lambda x + h \in D\}.$

Note that by the Condition 3) in the Theorem 2 above, $B_{\rho} = B_{|\cdot|_{\rho}}(0, 1)$. Let H_{k_0} be a subspace of X_{ρ} with dim $H_{k_0} \le k_0$ and $D \subset \lambda B_{\rho} + H_{k_0}$. Reasoning as in Theorem 1, together with the Conditions 2) and 3) above, one can show that D_2 is a bounded set.

Now for $\varepsilon > 0$, choose $\delta > 0$ such that Condition 1) in the above Theorem 2 is satisfied. Since D_2 is a bounded set, $D_2 \subset \bigcup_{i=1}^k \lambda B_{|\cdot|_{\partial}}(x_i, \delta)$. Therefore,

$$D \subset \lambda D_1 + D_2$$

$$\subset \lambda B_{\rho} + \bigcup_{i=1}^k \lambda B_{|\cdot|_{\rho}}(x_i, \delta)$$

$$= \lambda [B_{\rho} + \bigcup_{i=1}^k \{B_{|\cdot|_{\rho}}(0, \delta) + x_i\}]$$

$$\subset \lambda \Big[\bigcup_{i=1}^k \{B_{|\cdot|_{\rho}}(0, 1 + \delta) + x_i\}\Big]$$

$$\subset \lambda \Big[\bigcup_{i=1}^k \{(1 + \varepsilon)B_{\rho} + x_i\}\Big]$$

$$= \lambda (1 + \varepsilon) \Big[\bigcup_{i=1}^k \{B_{\rho} + \frac{x_i}{1 + \varepsilon}\}\Big]$$

Thus, $\alpha_{\rho}(D) \leq \lambda + \lambda \varepsilon < \lim_{k} d_{\rho}^{k}(D) + \varepsilon + \lambda \varepsilon$ for every $\varepsilon > 0$. Hence $\alpha_{\rho}(D) \leq \lim_{k} d_{\rho}^{k}(D)$ as desired.

Remark. Condition 2) in Theorem 2 is equivalent to Δ_2 condition in Musielak-Orlicz spaces (see [8]). The measure in the definition of Musielak-Orlicz spaces must be sigma-finite and atomless.

The following theorem applies to any s-convex, $0 < s \le 1$, modular function, not just to Orlicz spaces.

Theorem 3. Let ρ be left continuous s-convex modular, $0 < s \le 1$. Then

$$\lim_k d_\rho^k(D) = \alpha_\rho(D).$$

Proof. We need to show that the assumptions of Theorem 2 are satisfied. By the [7], we already know that $R_{\rho}(X_{\rho}) = +\infty$. In the s-convex case, the Conditions 2)

and 3) in Theorem 2 are not necessary to prove that D_2 is a bounded set. Since in this case $B_{|\cdot|_{\rho}}(0, 1) = B_{\rho}$ (here the left continuity is needed) is a ρ -bounded set $(a_n \to 0, \rho(x_n) \le 1$ then for $n \ge n_0, \rho(a_n x_n) \le a_n^s \rho(x_n) \le a_n^s \to 0$). Consequently, D_1 is a ρ -bounded set and this implies that D_2 is a ρ -bounded set. To see this, consider $a_n \to 0, h_n \in D_2$, then $\lambda g_n + h_n = f_n \in D, \rho(g_n) \le 1$.

Note that, by I.3,

$$\rho(a_n h_n) = \rho(a_n (f_n - \lambda g_n))$$

$$= \rho(\frac{1}{2} [2a_n f_n + (-2\lambda a_n g_n)])$$

$$\leq \rho(2a_n f_n) + \rho(2\lambda a_n g_n).$$

Since D_2 is ρ -bounded and λB_{ρ} is ρ -bounded, the last two terms tend to 0 as $n \to \infty$. To complete the proof, we need to establish Condition 1) in Theorem 2, for any s-convex modular ρ .

First observe that $B_{|\cdot|_{\rho}}(0, 1+\varepsilon) = (1+\varepsilon)^{1/s}B_{\rho}$. Let $\varepsilon > 0$ be fixed, choose $\delta > 0$ such that $(1+\delta)^{1/s} \le 1+\varepsilon$. Then

$$B_{|\cdot|_{\rho}}(0,1+\delta) = (1+\delta)^{1/s}B_{\rho} \subset (1+\varepsilon)B_{\rho}.$$

Remark. The above theorem is an improvement of Theorem 2 in [1], which clarifies the solution in the s-convex case without any Δ_2 -condition.

References

- [1] Aksoy, A. G., Baillon, J. B., Measures of noncompactness in Orlicz modular spaces, Collect. Math. 44 (1993), 1-11.
- [2] Appel, J., Misure di noncompattezza in spazi-ideali, Rendiconti Scienze Matematiche e Applicazioni A 120 (1986).
- [3] Darbo, G., Punti uniti in transformazioni a condominio non campotto, Rend. Sem. Mat. Univ. Padua 24 (1955), 84–92.
- [4] Edmunds, D. E., Edmunds, R. M, Entropy and approximation numbers of embeddings in Orlicz spaces, J. London Math. Soc. (2), 32 (1985), 528-538.
- [5] Khamsi, M. A., Kozlowski, W. M., Riech, S., Fixed point theory in modular function spaces, Nonlinear Anal. 14 (1990), 935-953.
- [6] Lebow, A., Schechter, M., Semigroup of operators and measures of noncompactness, J. Functional Anal. 7 (1971), 1–26.
- [7] Lewicki, G., Bernstein's "Lethargy" theorem in metrizable topological linear spaces, Monatsh. Math. 113 (1992), 213-226.
- [8] Musielak, J., Orlicz spaces and modular spaces, Lecture Notes in Math. 1034, Springer-Verlag, Berlin 1983.
- [9] Nussbaum, R. D., The raduis of the essential spectrum, Duke Math. J. 37 (1970), 473–479

- [10] Pinkus, A., *n*-widths in approximation theory, Ergeb. Math. Grenzgeb. (3) 7, Springer-Verlag, Berlin 1985.
- [11] Sadovskii, B. N., Limit-compact and condensing operators, Russian Math. Surveys 27 (1972), 85-155.