Modular spaces and K-widths

A. G. Aksoy and G. Lewicki

Abstract. In this paper, we show that the ball measure of noncompactness of a modular
space X, is equal to the limit of its X -widths when p is a left continuous, s-convex modular
function, without any A;-condition. We also obtain a similar result for SF-spaces, when the
SF-norm A is uniformly continuous.
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1. Notation and definitions

Throughout the following X is a linear space over a field X (K =Ror K =C).

I. A function p : X — [0, 00] is called modular if the following hold for arbitrary
x,yeX: :

1. p(x)=0iff x =0.

2. plax)=px)ifaek,|a|=1.

3. plax + By) < p(x)+ p(y) fore, =20, + 8 =1
If in place of 3) we have

plax + By) <o’p(x)+ p°p(y) fora, =0, a’+p =1

for an s € (0, 1], then p is called s-convex modular (convex if s = 1).
The set
Xpo={xeX: limp(ax) =0}
a—0

is called a modular space.
Each modular space X, may be equipped with an F-norm given by the formula
Ixlp =inf{u > 0: p(x/u) <u} forx € X,.

A modular p in X is called left continuous if lim,_, ;- p(Ax) = p(x) forall x € X,.
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It is known (see [8]) that, if p is left continuous, s-convex modular in X, then the
inequalities |x|;, < 1and p(x) < 1 are equivalent for every x € X, p- Here by |x[;, we
mean x '
ul /S) 5 1} .

A particular class of modular spaces are Orlicz-Musielak spaces. To define these
spaces, let (E, I, p) be a measure space and let f : E x Ry — R, satisfy the
following conditions.

IxIp = inf{u > 0 : p(

1. f(, ) : Ry — R4 isanondecreasing, continuous function such that £ (¢, 0) =
Oand f(t,u) >O0foru > 0.

2. f(-,u): E » R; is a Z-measurable function for all # > 0.
3. [y F(t,u)du(t) < oo forevery u > 0and A € £, u(A) < o0.

Suppose that X is the space of all real (or complex) valued X -measurable functions
defined on E. For x € X, set

py(x) = fE £ 120D du).

From the above 1) and 2), it is clear that ps is modular. The modular space X o is
called Orlicz-Musielak space (and Orlicz space, if the function f is independent of
the variable ¢).

We say the function f satisfies a Aj-condition if

J@,2u) < Kf(e,u) + h(2)

forallu > 0,t € E where h € LY(E,p), h > 0 and K is a positive constant
independent of the variables ¢, u.
For further theory of modular spaces we refer to [8].

II. Assume a function A/ : X — R, satisfies the followihg conditions,
1. Nx) =0iffx = 0.

2. an - a and N(x, — x) — 0 then M(ayx, — ax) — O for all sequences
{ay) € K and {x,} C X.

3. If N(xp — x) = O and N(y, — y) = O then N'(x, + y, — x — y) — O for all
sequences {x,}, {y»} C X. :

4. N(ax) =N(x)foreveryx € Xanda € K, |a] = 1;
5. N(xp — x) = 0 then N(x,) = N(x) for every {x,} C X.

6. The space X is complete with respect to the topology induced by the family
C={B(x;r): x € X, r >0} where

Bxir)={yeX:Nx—-y)<r).
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The pair (X, \) is said to be an SF-space and the function A will be called an
SF-norm. '

Note that each F-space (in particular each Banach space) is an SF-space. If f
satisfies a Ap-condition, then each Orlicz-Musielak space (X,,, py) is an SF-space.
However, there exist SE-spaces which are neither F-spaces nor modular spaces as can
be seen by the following '

Example ([7]). Assume f : Ry — Ry satisfies the following conditions:
1. f is continuous and f(t) = 0ifft =0.
2. There exists d > 0 such that fj,, ,, is strictly increasing.

3. There exists d; > 0 and M > 1 such that
ft+5) < M(f(t) + f(s)) fors, t € [0, d1].

4. There exists lim;—.00 f(¢) € (0, 00).

Let (E, T, u) be a measure space, u(E) < o0 andlet M(E) = {x: E — R,
x is ©-measurable }. For x € M(E) define N'(x) = fE f(x(@)]) du(r). By Fatou’s
lemma, the Riesz and the Lebesgue theorems, one can show that the pair (M (E), N)
is an SF-space. It is clear that for nonmonotonic f the function AV is not modular, and
if we additionally assume

1
 Jim f@) < Esup{f(r) :teRy}

then the pair (M (E), V) can not be an F-space.

The SF-norm N is called nondecreasing iff for any t1, 12 € R, |ty < |#2| implies
N(t1x) < N(tzx) and given D in an SF-space (X, N), we say D is bounded iff
Ay — 0, x, € D implies N(Azx;) — 0. Analogously D C X, is p-bounded
iff a, — 0, x, € D implies p(@nx,) — 0. The SF-norm N is called uniformly
continuous if for every ¢ > 0, thereisad > 0 such that

{EN(f — g) < 8 then [N(f) = N(@)l < &

Note that in the definition of the SF-space, A/ is only a continuous function.

Proposition 1. Let (X, ) be an SF-space with N being uniformly continuous. Then
for every € > 0 there is V, an open neighbourhood of 0, such that

BN©,r)+V cBNQO,r+e) (%)
where BN (x,r) ={y e X : N(x —y) =r}

The proof is straightforward.
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M. Let (X, \) be an SF-space. For V. C X, V \ {0} 5 & put
Ry (V) = inf{supiN(rv) : £ € R4} : v €'V \ {0}).

This number which may be equal to 400, is called the radius of the set V (7). As
shown in the following example, it may also occur that Rpr(V) =

Example. Let X be the space of all complex sequences equipped with an SF-norm

N defined by
00 l i lxil
N(x)- E (-2') 'l—_i_lT” forx e X.

i=1

Letforn e N,V, = {x € X : x; =0for j > n). Then clearly Ry/(V,) =2~" and
consequently Ryr(X) = 0. ’

In [7] it is shown that if X, is a modular space with p s-convex modular, then
Rp(Xp) =400

K-widths are extensively studied in the context of approximation theory [10].
Our aim in this paper is to connect K-widths with measures of noncompactness. Such
connections are not only useful in fixed point theory (see [3], [11]) but also in the study
of the radius of the essential spectrum (see [6], [9]). Measures of noncompactness for
Orlicz spaces are studied in [1), [2] and [4]. In [S] one can find fixed point theorems
for Orlicz modular spaces.

2. K-widths in SF-spaces

Let (X, N) be an SF-space, D be bounded set in X. Then the ball measure of non-
compactness of D, a(D), is

. n
a(D) = inf{r >0: D c | J BN (x,r)}
k=1
and K-th width of D, d*(D), is defined as
d¥(D) = inf{r > 0: D c BN(0,r) + Ax dim(Ax) < k).

Theorem 1. Let D be a bounded subset of an SI';-space (X, N). Suppose that N is
nondecreasing, Ryr(X) = oo and for everyr > 0, € > 0 and E finite dimensional
subspace of X, there is an open neighborhood V of 0 in E such that

BN@©,r)+V c BN, r +¢). : *)
Then a(D) = limg—_yc0 d*(D).
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Proof. Let D be a fixed bounded set in X. If there is » > 0 and k € N such that
D c Uk, BN (x;,r), then '

) k
DcBYNO,r+ U{xi} c BN (0, r) + Span(xy, x2, . ... , X%)-
i=l1

Therefore, if @(D) < oo thend = limg d*(D) is finite and d < a(D).
. To obtain the other inequality, assume thatd < +00, fixk € N,e > 0and Ay C X
with dim A = k such that

D c BN(0, d*(D) + €) + As.
Let us define

Dy = {g € BN(0,d*(D) +¢): thereis h € Ag, g +h € D)
Dy = {h € Ay : thereis g € BN(0,d*(D) +¢), g +h € D}.

Obviously D c Dy + D;. Now we claim that D; is a bounded set in (X, N). Assume
on the contrary that there is {h,} C Dz and {A,} C R, A, — O such that N(A,h,)
does not tend to zero. Since dim(Az) = k, one has

k
Anhy = Er?)'i

i=1

where y1, ..., Y is a fixed basis of Ax. Consider the following cases.

Case 1: sup,cy (maxi<i<x Ir'|) < +o0o. Then passing to a subsequence, if neces-
sary, by the properties of A/ (I1.2 and 3) we may assume N(Anhy — h) = O for some
heX,h+#0.

On the other hand, by the definition of Dy, for every n € N there is g» € Di
with f, = ga + hn € D. Since Ry(X) = +00, there is a £ > 0 such that N'(th) >
d*(D) + ¢. By the boundedness of D, (A, f,) = 0. By IL1, I1.2 and IL5 of the
definition,

N(tAngs) = N(th) > d*(D) +s.
But for n > ng, tA, < 1. Since AV is nondecreasing
N(thngn) < N(gn) <d*(D)+¢ forn > no,

a contradiction.
Case 2: thereis ip € 1,..., k with lim,,co inf |r}}| = +00. Passing to a subse-
quence, if necessary, we may assume that foreachi € {1, 2,...,k},
rﬂ
c=lim=L  (cp=1).
n riO
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By the Definition I1.1, we have

A k -
N[(—;‘-) h,, - Ec,-y,-] - 0.
Tig i=1

We can set h = Zﬁ;l Ciyi, since yy, ..., yx is a basis of Ax withcjy = 1, & # 0.
Considering the subsequence A, /r;(’) instead of A, and reasoning as in Case 1, we
obtain a contradiction.

Therefore D; is a bounded set with respect to the topology defined by AV. Since
each SF-space, as a complete, topological linear space with a countable basis of
neighborhoods of 0 is metrizable, the SF-space (A, V) is metrizable. But Ag is finite
dimensional, the topology induced by N in A is the same as any norm topology in
Ag. Hence, D, is bounded in any norm in Ag. Consequently D, (the closure of D,
in A in any norm) is a compact set.

Now by the assumption (x), there is V an open neighborhood of 0 in Ay, such that

BN (0,d*(D) +¢) + V c BN (0, d*(D) + 2¢).
Since D, is a compact set D; C ULI xi + V. Note that
D Cc D+ D

I
c BY©,dD)+6) + | Jixi + V)

{
c Uiz +BY0,d4D) + 2}
i=1

!
= UBY (i d* (D) +20).
i=l . ‘
Consequently, @(D) < d*(D) + 2¢ forevery ¢ > 0 and k € N, which yields
(D) <d = lim d*(D).
Remark. Condition (*) in Theorem 1 is satisfied if AV is uniformly continuous, which

covers the case of F-spaces. Moreover, if one assumes lim,,—, oo f(t, ) = +00 then
the corresponding oy F-norm | - |, satisfies the assumptions in Theorem 1.

3. K-widths in medular spaces

Let X, by a modular space and D C X, be a p-bounded set. Let B, be the closed
p-ballin X, ie., B, = {x € X, : p(x) < 1). K-width of D in X, d%(D), defined
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di(D) =inf{A >0: D CAB,+ H : dimH <k),

and p-ball measure of noncompactness of D, a, (D), defined as

: k
ap(D) =inf{A > 0: D c | JA(xi +Bp) : x1,..., % € Xp).
i=1
Note that if p is a norm, then the notations d and a,, above coincide with the classical

definitions of 4% and .
The following are some basic properties of (D).

Proposition 2. a) Montonicity: Dy C D, implies ap(Dy) < ap(D2).

b) Semi-additivity: ap(D1|J D2) = max{a,(D1), ap(D2)).

c) Invariance under translation: ap(D + xg) = ap(D) for any xg € X).

d) Algebraic semi-additivity: If p is convex, then a(Dy + D2) < a(Dy) + ap(D2).

e)ap(D) =ap (D) where the closureclosure is taken with respect to F-norm. More-
over if p is convex, then c(D) = a(co(D)) where co(D) denotes the convex hull of
D,

§)If By is a| - |p-bounded set, then ap(D) =0 iff D is | - |,- compact.

Proof. a) through e) follow from the definition. To prove f), set B),,(0,r) = {x €
X, : Ixlp < r} and @y, (D) = inf{r > 0 : D c UL,[xi + By, (0, ]}, we claim
that ¢p(D) = 0 implies a).|,(D) = 0 and hence D is | - |p-compact. Since B, is
bounded set, Ag - B, C B, (0, r) for some Ag. Then since D C Uf=,{x,- +20: By} C

, Uf=1 {xi + Bo(C, r)}, we have the desired result. On the other hand, if D is | - |-

compact set, then forevery A > 0, D C Uf=1{x,- + A - int(B,)}. Hence, for every

x € D contained in the open set x; + A - int(B,) since A was arbitrary a,(D) = 0.

Theorem 2. Suppose p is a modular and Rp(Xp) = +00. Suppose that the Luxem-
burg norm | - |, satisfies the following conditions:

1. Forevery € > 0, there is § > O with
By, (0,1+8) C (1+£)B,(0,1).

2. |xa| = 0iff p(xn) = 0.
3. lim.1 p(cx) = p(x) for x € X,.
Then limg» o0 d€(D) = e(D).

Proof. Asinthe proof of Theorem 1, one can easily establish that lim d%(D) < a(D).
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To prove the converse, consider £ > 0 and A such that
limd3(D) < A < limdj(D) +e.
Define analogously as in Theorem 1,
Dy = {x€B,0,1): thereis heHy, with Ax+h e D};
Dy = {hGHkoI there is xGBp,M'l'hGD}.

Note that by the Condition 3) in the Theorem 2 above, By, = By, (0, 1). Let Hi, bea
subspace of X, with dim Hy, < ko and D C AB, + Hy,. Reasoning as in Theorem 1,
together with the Conditions 2) and 3) above, one can show that D, is a bounded set.

Now for € > 0, choose § > 0 such that Condition 1) in the above Theorem 2 is
satisfied. Since D; is a bounded set, D, C Uf,:, ABy,, (xi, 8). Therefore,

D C AD+ D,

k
C ABp+|JABy,(xi,8)
i=1

k
= A[B,+ U{B|.|, ©,8) +x)1

i=1

k
< U8, ©0.1+8) +x1]

i=1

k
c x[IL=)l{(1+s)Bp+x.-}]

= a1 —i;s)[O{B. b }]
- et P 1+e
Thus, @p(D) < A + Ae < limg d%(D) + ¢ + Ae for every £ > 0. Hence a,(D) <
limy. d%(D) as desired.

Remark. Condition 2) in Theorem 2 is equivalent to A condition in Musielak—Orlicz
spaces (see [8]). The measure in the definition of Musielak—Orlicz spaces must be
sigma-finite and atomless.

The following theorem applies to any s-convex, 0 < s < 1, modular function, not
just to Orlicz spaces.

Theorem 3. Let p be left continuous s-convex modular, 0 < s < 1. Then
lim d3(D) = ap(D).

Proof. We need to show that the assumptions of Theorem 2 are satisfied. By the [7],
we already know that R,(X,) = +o00. In the s-convex case, the Conditions 2)
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and 3) in Theorem 2 are not necessary to prove that D, is a bounded set. Since
in this case By, (0, 1) = B, (here the left continuity is needed) is a p-bounded set
(an = 0, p(xp) < 1thenforn > ny, p(anxs) < a,p(xs) < a; — 0). Consequently,
- Dyisa p-bounded set and this implies that Dz is a p-bounded set. To see this, consider
an = 0,h, € Dy, thenAg, +hp = f € D, p(gn) < L.
Note that, by 1.3,

p(anhy) p(an(fn — Agn))

PG 128 fa + (~2angn))

< pQanfa) + p(2rangn).

Since D; is p-bounded and A B,, is p-bounded, the last two terms tend to O as n — o0.
To complete the proof, we need to establish Condition 1) in Theorem 2, for any
s-convex modular p.
First observe that By, (0, 1 +¢) = (1+¢)'/*B,. Lete > 0 be fixed, choose 5 > 0
such that (1 + 8)!/* < 1 +e&. Then

By, 0,1+8) = (1+ 8B, c (1 +¢)B,.

il

Remark. The above theorem is an improvement of Theorem 2 in [1), which clarifies
the solution in the s-convex case without any As-condition.
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